E2 Embryo Media with Methylene Blue (Revised May 2013 JLM)

At ZIRC 0.5X E2 with 0.5 mg/L Methylene Blue is used as a working solution (Conductivity≈1000-1100 μS; Osmolality≈28 mmol/kg). We prepare three concentrated stock solutions, E2A, E2B and E2C, and 0.1% Methylene Blue which are then used to make a large volume (20L) of the 0.5X E2 working solution. This protocol is a modification (half strength) of the E2 Embryo Medium described in C. Nüsslein-Volhard and R. Dahm (2002) ZEBRAFISH, Oxford University Press, A Practical Approach.

.....

E2A (100X) contains: 1.5 M NaCl

50 mM KCl 100 mM MgSO₄ 15 mM KH₂PO₄ 5 mM Na₂HPO₄

To prepare 2 L of E2A (100X) combine the following according to the instructions below:

175.0 g Sodium Chloride (NaCl) 7.5 g Potassium Chloride (KCl)

49.3 g Magnesium Sulfate Hepahydrate (MgSO₄-7H₂O) {Can substitute 24.1 g of Anhydrous MgSO₄}

40 mL E2A Buffer Mix

• In a 2 L beaker, add a large stir bar and Nanopure dH₂O to 1600 ml

- Add the above dry reagents in the order listed; stir to dissolve each one completely before adding the next reagent
- Add 40 mL E2A Buffer Mix (see recipe below), continue stirring to mix
- Transfer solution to a 2 L graduated cylinder and adjust final volume to 2.0 L with Nanopure dH₂O
- Cover the graduated cylinder with Parafilm and invert 2-3 times to mix completely
- Filter sterilize into two 1 L bottles

• Store in refrigerator at 4°C

E2A Buffer Mix contains: 750 mM KH₂PO₄

250 mM Na₂HPO₄

To prepare 1L of E2A Buffer Mix combine the following according to the instructions below:

102.1 g Potassium Phosphate Monobasic (KH₂PO₄)

67.0 g Sodium Phosphate Dibasic Heptahydrate (Na₂HPO₄-7H₂O) {Can substitute 35.5 g of Anhydrous Na₂HPO₄}

- In a 1 L beaker, add a large stir bar and Nanopure dH₂O to 750 mL
- Add the above dry reagents in the order listed; stir to dissolve each one completely before adding the next reagent
- \bullet Transfer solution to a 1 L graduated cylinder and adjust final volume to 1.0 L with Nanopure dH₂O
- Cover the graduated cylinder with Parafilm and invert 2-3 times to mix completely
- Filter sterilize
- Store in refrigerator at 4°C

E2B (500X) contains: 500 mM CaCl₂

To prepare 1 L of E2B (500X) combine the following according to the instructions below:

73.5 g Calcium Chloride Dihydrate (CaCl₂-2H₂O)

- In a 1 L beaker, add a large stir bar and Nanopure dH₂O to 800 mL
- Add the above dry reagent and stir to dissolve completely
- Transfer solution to a 1 L graduated cylinder and adjust final volume to 1.0 L with Nanopure dH₂O
- Cover the graduated cylinder with Parafilm and invert 2-3 times to mix completely
- Filter sterilize
- Store in refrigerator at 4°C

E2C (500X) contains: 350 mM NaHCO₃

To prepare 500 mL of E2C (500X) combine the following according to the instructions below:

14.7 g Sodium Bicarbonate (NaHCO₃)

- In a 1L beaker, add a medium stir bar and Nanopure dH₂O to 350 mL
- Add the above dry reagent and stir to dissolve completely
- Transfer solution to a 500 mL graduated cylinder and adjust final volume to 500 mL with Nanopure dH₂O
- Cover the graduated cylinder with Parafilm and invert 2-3 times to mix completely
- Filter sterilize
- Aliquot into 20 ml portions (in 50 ml Falcon tubes)
- Store in lab freezer at -20°C
- Thaw 20 mL aliquot just prior to use

0.1% Methylene Blue

To prepare 1L of 0.1% Methylene Blue, combine the following according to the instructions below:

1.0 g Methylene Blue

- Add 1.0 L Nanopure dH₂O to a 1 L bottle
- Add the above dry reagent to the bottle and shake to dissolve completely
- Store at room temperature (28°C)

.....

FINAL WORKING SOLUTION: 0.5X E2 with Methylene Blue:

To prepare 20L of 0.5X E2 with Methylene Blue

- Fill 20 L carboy with Reverse Osmosis water to 19 L, aerate until ready to mix
- Add the following to the carboy in the order listed (shake/stir all solutions before measuring)

100 mL 100x E2A 20 mL 500x E2B 20 mL 500x E2C

10 mL 0.1% Methylene Blue

- Adjust final volume to 20 L with Reverse Osmosis water
- Aerate and stir to mix
- Flush carboy spout by flowing out 200-400 mL and pouring back into top of carboy
- Remove a small aliquot (~50 mL) to check conductivity and pH
- Adjust pH to 7.2-7.6 (with concentrated HCl or concentrated NaOH) if necessary
- Store and use at room temperature (28°C), make fresh weekly

E2 Embryo Media Final Working Solution Molar Concentrations:

<u>0.5X E2</u>			<u>1.0X E2</u>		
7.5	mM	NaCl	15	mM NaCl	
0.25	mM	KC1	0.5	mM KCl	
0.5	mM	$MgSO_4$	1.0	mM MgSO ₄	
75	μ M	KH_2PO_4	150	$\mu M KH_2PO_4$	
25	μΜ	Na_2HPO_4	50	μM Na ₂ HPO ₄	
0.5	mM	CaCl ₂	1.0	mM CaCl ₂	
0.35	mM	NaHCO ₃	0.7	mM NaHCO ₃	
0.5	mg/L	Methylene Blue	0.5	mg/L Methylene Blue	