Lab 0: FINDING YOUR WAY AROUND Lab 0.1: Introduction to micro-pipetting

Goal for this lab:

Master micropipetting technique.

Introduction

One of the most important skills you will need in this course is your ability to use a micropipettor. Micropipettors are used to make accurate measurements of extremely small volumes—from one milliliter down to one microliter (1 mL to 1 μ L). Most of what we do in molecular biology involves manipulating volumes of liquid in this range. If you learn to do it accurately now, your experiments will go much more smoothly later.

Micropipettors

These are precision scientific instruments, and must be treated with respect. The pipettor is used to draw liquid up into a cheap disposable tip. The three pipettors you will use take up and deliver liquids in the volume range from ~0.5 μ L to 1.0 mL. Your instructor will show you how to use this device. Read and follow these guidelines to maintain the accuracy and precision of your pipettors.

Rotate the volume adjustor to the desired setting. Note the change in plunger length as the volume changes. Be sure to properly locate the decimal point when reading the volume setting. (Your instructors will demonstrate.)

You have three sizes of pipets in this lab: LTS20s, which can measure between 1 μ L and 20 μ L; LTS200s, which can measure between 21 μ L and 200 μ L; and LTS1000s, which can measure between 200 μ L and 1000 μ L (1 mL).

There are three numbers on the display of each pipettor. Look at the top of the pipet to see which one you are holding, then look at the display. The numbers represent volumes as shown below. The color change represents crossing the decimal place or changing units.

L 20		L 200		L 1000	
1	10µL	1	100µL	1	$1000\mu L = 1.0 \text{ mL}$
0	1µL	0	10µL	0	100µL
0	$0.1 \mu L = 100 nL$	0	1µL	0	1µL

Firmly seat a proper-sized tip on the end of the micropipettor. The tips boxes are colorcoded to match the label on the plunger.

When withdrawing or expelling fluid, always hold the tube firmly between your thumb and forefinger, keeping it nearly at eye level to observe the change in the fluid level in the pipet tip. Do not pipet with the tube in the test tube rack or have another person hold the tube while you are pipetting.

Hold the tube in your hand during each manipulation. Open the top of the tube by flipping up the tab with your thumb. During manipulations, grasp the tube body (rather than the lid), to provide greater control and to avoid contamination of the mouth of the tube.

For best control, grasp the micropipettor in your palm and wrap your fingers around the barrel; work the plunger (piston) with the thumb. Hold the micropipettor almost vertical when filling it.

Notice the friction "stops" on the two-position plunger with your thumb. Depressing to the first stop measures the desired volume. Depressing to the second stop introduces an additional volume of air to blow out any solution remaining in the tip.

To withdraw the sample from a reagent tube:

- 1. Depress the plunger to **first** stop and hold it in this position. Dip the tip into the solution to be pipetted, and draw fluid into the tip by gradually releasing the plunger. Be sure that the tip remains in the solution while you are releasing the plunger.
- 2. Slide the pipet tip out along the inside of the reagent tube to dislodge any excess droplets adhering to the outside of the tip. To avoid future pipetting errors, learn to recognize the approximate levels to which particular volumes fill the pipet tip.
- 3. If you notice air space at the end of the tip or air bubbles within the sample in the tip, carefully expel the sample back into its supply tube. Collect the sample at the bottom of the tube by pulsing it in a microcentrifuge.

To expel the sample into a reaction tube:

- 1. Touch the tip of the pipet to the inside wall near the bottom of the reaction tube into which the sample will be emptied. This creates a capillary effect that helps draw fluid out of the tip.
- 2. Slowly depress the plunger to the first stop to expel the sample. Depress to second stop to blow out the last bit of fluid. Hold the plunger in the depressed position.
- 3. Slide the pipet out of the reagent tube with the measurement plunger depressed, to avoid sucking any liquid back into the tip.

Use the ejector button (located at the back and different from the plunger) to remove the tip into a waste container.

Important pipettor don'ts:

- Never rotate the volume adjustor beyond the upper or lower range of the pipet.
- Never use the micropipettor without the tip in place; this could ruin the piston. Pipettors use disposable plastic tips. Every molecular biology lab circulates its own version of the story of the not-too-bright grad student who did not use a tip. Do not be this student!
- Never invert or lay the micropipettor down with a filled tip; fluid will run back into the piston.
- Never let the plunger snap back after withdrawing or expelling fluid; smooth motions are the key to success.
- Never immerse the barrel of the micropipettor in fluid. Only the disposable tip touches the liquid.
- Never reuse a tip. Tips are pretty cheap (about \$0.59 per rack). The risk of cross contaminating your solutions is too great to get tricky with tips. Just use a new one every time unless there is no possibility of cross contamination—like if you are pipetting the same solution into multiple empty tubes.

Measurement Repeatability

An essential property of good science is that an experiment gives the same results even in different hands. Repeated measurements of the same thing should give the same value, no matter who makes the measurement.

Our first job, therefore, is to make sure our measurements are reliable. We will be checking both inter-and intra-observer reliability, as well as the reliability of our instruments.

Figure out what each of these volumes of water should weigh, and which pipet should be used to dispense that volume:

μL	mL	weight (g)	weight (mg)	pipet
1000 =	=	=		
100 =	=	=		
10 =	=	=		

Calibrate all of your pipettes.

Put a weigh boat on the balance pan, and zero the balance.

Have one member of your group dispense the appropriate volume of water onto the pan. Record your result.

Re-zero the balance and repeat. Your instructor will tell you how many times to do this.

Repeat the exercise with the other member(s) of the group.

Check discrepancies with your instructor. It's better to pay to have your pipette calibrated now than to get inaccurate experimental results all semester long.

Data Analysis

If you have enough measurements, you can analyze them. Check with your instructor.

Examine your data by eye. Does anything stand out? Any strange values? You can use the Q-test (p. 37) to see whether you can confidently omit one outlying value.

Using the built-in functions in Excel, calculate the mean and standard deviation of each of your sets of repeated measurements.

Describe any differences between measurements made by different people, or with different instruments. Make a few repeat measurements as necessary to distinguish between technique and instrument. (Hint: the biggest source of discrepancy is likely to be either using the second stop on the pipet plunger or letting go of it suddenly during filling. Think about which technical error would give you a measure higher than expected, and which, lower.)